PPAR-γ Signaling Crosstalk in Mesenchymal Stem Cells
نویسندگان
چکیده
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcriptional factors. Among other functions, PPAR-gamma acts as a key regulator of the adipogenesis. Since several cytokines (IL-1, TNF-alpha, TGF-beta) had been known to inhibit adipocyte differentiation in mesenchymal stem cells (MSCs), we examined the effect of these cytokines on the transactivation function of PPAR-gamma. We found that the TNF-alpha/IL-1-activated TAK1/TAB1/NIK (NFkappaB-inducible kinase) signaling cascade inhibited both the adipogenesis and Tro-induced transactivation by PPAR-gamma by blocking the receptor binding to the cognate DNA response elements. Furthermore, it has been shown that the noncanonical Wnts are expressed in MSCs and that Wnt-5a was capable to inhibit transactivation by PPAR-gamma. Treatment with Wnt5a-activated NLK (nemo-like kinase) induced physical association of the endogenous NLK and H3K9 histone methyltransferase (SETDB1) protein complexes with PPAR-gamma. This resulted in histoneH3K9 tri-methylation at PPAR-gamma target gene promoters. Overall, our data show that cytokines and noncanonical Wnts play a crucial role in modulation of PPAR-gamma regulatory function in its target cells and tissues.
منابع مشابه
15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner
Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملبیان ژنPPARγ در سلولهای چربی تمایز یافته از سلولهای بنیادی مزانشیمی مغز استخوان انسانی
Background and Aim: Obesity is now considered as one of the main risk factors of certain known diseases such as cardio-vascular diseases, non- insulin-dependent diabetes, and common cancers. Moreover, the increase of white fat tissue is known as a main factor in the obesity process, in terms of physiology and pathology. Therefore, the understanding of adipocytes differentiation processes is cru...
متن کاملReview of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance i...
متن کاملP-25: Characterization of Sheep Ovarian Multipotent Theca Stem Cells
Background Theca cells play important roles during folliculogenesis. They synthesize androgens, provide crosstalk with granulosa cells and oocytes during development, and provide structural support of the growing follicle to produce a mature and fertilizable oocyte. In children patients who are going to be ovariectomy, follicogenesis is at early stage and thus the follicles need to be mature in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010